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ABSTRACT 
BagL is a formal, general purpose language which provides for database, event-driven, and 

scientific computing in a uniform level of representation. In BagL a problem solver is not required to 
provide the algorithmic detail in a problem solution. Instead the problem solver describes the solution 
directly by specifying, via a metastructure, the data structures which will hold results useful in solving 
the problem. A metastructure is a very general abstraction configurable into any imaginable data 
structure, where a data structure is viewed as a database; a CRT screen or report layout; or a classical 
data structure such as a stack, a queue, etc. BagL provides a platform to specify the contents and the 
form of a data structure. 

BagL is an improvement over current programming paradigms in that it provides for a natural 
platform to exploit data flow parallelisms and because it eliminates much of the technical complexity of 
problem solving including: decisions about data structures; decisions about how control structures 
are to interact with data structures; decisions about how one converts an external structure to an internal 
structure and vice versa; input-output decisions, in general; decisions about parallelisms; decisions 
about control structures in general. BagL is a small language (i.e., there are few language constructs) 
and it is not domain dependent. 
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FOREWORD 
This is the final report associated with AFOSR contract, F49620-93-1-0152. 



PREFACE AND ACKNOWLEDGEMENTS 
Research sponsored by the Air Force Office of Scientific Research (AFSC), under 

contract F49620-93-1-0152. The United States Government is authorized to reproduce and 
distribute reprints for governmental purposes notwithstanding any copyright notation hereon. 



OBJECTIVES. 
In proposing the research effort which serves as the subject of this report, we set out to 

complete or make substantial progress toward each of the following research objectives: 

(1). Complete a BagL interpreter based upon the current syntax and semantics; 

(2). Enhance the semantics of BagL to abstract out quantifier information; 

(3). Show expressiveness (via LISP approach); 

(4). Extend the semantics of BagL to provide facilities for realtime specification and 

concurrency; 

(5). Establish a logical semantic for BagL to provide for the statement of constraints; 

(6). Provide automatic facilities to help maintain BagL software by employing results 

from the study of nonmonotonic logic; and 

(7). Develop a prototype BagL environment including a visual interface. 

In the next section, the status of each of these efforts is discussed. 

STATUS. 
In the following subsections each of the research objectives of the referenced contract 

is discussed. 

(1).   Complete a BagL interpreter based upon the current syntax and semantics 

The first version of a BagL interpreter was completed in the summer of 1993 and 

reported in the 1993 yearly report [C94]. 

(2).   Enhance the semantics of BagL to abstract out quantifier information 

The BagL semantics were completed in the spring of 1993 and reported in the 1993 

yearly report [C94]. These semantics abstracted out the quantifier information which was 

necessary in earlier versions of BagL. 

(3).     Show  expressiveness 
In March, 1995 we completed a proof that BagL is equivalent to the Universal Turing 

Machine. The basic parts of this proof are given in Appendix A. 



(4).   Extend the semantics of BagL to provide facilities for realtime 

specification and concurrency 

The semantic extensions for BagL's concurrent and event driven capabilities exist in the 

semantics reported in the 1993 yearly report [C94]. The concurrent characteristics of BagL are 

given in Appendix B of this report. 

(5).   Establish a logical semantic for BagL to provide for the statement of 

constraints 

A further extension to BagL, to impose integrity constraints, is accomplished and 

discussed in detail in the Ph.D. thesis of Ann Quiroz Gates [G94]. An overview of these 

concepts is given in Appendix C. 

(6).    Provide automatic facilities to help maintain BagL software by employing 

results from the study of nonmonotonic logic 

The reliability of a program is subject to environmental influences. Programs do not 

operate in a vacuum. They are expected to fit into some environment and operate reliably in 

that environment. Unfortunately, environments change and specifications which were true in 

the original environment may not be true in future environments. When the truth of a 

specification changes as a result of an environment, the corresponding program must evolve to 

conform to the new environment. Evolution, therefore, is achieved through adaptive 

maintenance. 

Environmental changes are indicated when a system is presented information which is 

inconsistent with the program's knowledge. A program cannot respond correctly when 

environmental information contradicts specified information. 

In [LC95] it is shown that many environmental changes result in an inconsistency in the 

software system's specification. Using the integrity constraints discussed in Appendix C, the 

shifts in knowledge which result in inconsistencies are easily detected in constraint functions 

which operate on a DB and its successor, DB' (e.g., when some information is true in DB and 

false in DB'). Detecting inconsistencies permits the system itself to alert programmers of the 

need for adaptive maintenance. Thus, through its features for integrity constraints, it is 

possible that BagL may provide additional support for maintenance and, as a result, further 

improve upon the reliability of systems developed in BagL. 

(7).    Develop a prototype BagL environment including a visual interface 

A Visual Interface and prototype environment are discussed in detail in the Master's 

Thesis of Aida Gandara [AG94].   An overview of this effort is given in Appendix D. 



PUBLICATIONS. 
Further evidence of the success of our theoretical work can be observed in our recent 

publications. The following is a list of journal papers (appearing or accepted to appear during 

the project period) based on the AFOSR project at UTEP. 

C.V. Ramamoorthy Daniel E. Cooke, and Chitta Baral, "Maintaining the 
Truth of Specifications in Evolutionary Software," International Journal 
of AIT,  Vol. 2, No. 1 (1993) pp. 15-31. 

Daniel E. Cooke, "Possible Effects of the Next Generation Programming 
Language on the Software Process Model," International Journal on 
Software Engineering and Knowledge Engineering, Vol 3 No 3, 
(September, 1993) pp. 383-399. 

Daniel E. Cooke, "An Introduction to the Issues of Computer Aided Software 
Engineering," in The Impact of CASE Technology on Software 
Processes, World Scientific Publishing, Singapore (1994) pp 1-12. 

Daniel Cooke, Richard Duran, Ann Gates, and Vladik Kreinovich, 
"Geombinatoric Problems of Environmentally Safe Manufacturing and 
Linear Logic," Vol. 4 No. 2 (October, 1994), Geombinatorics, pp. 36- 
47. 

Daniel Cooke, Elif Demirörs, Onur Demirörs, Ann Gates, Bernd Krämer, 
Murat M. Tanik, "Languages for the Specification of Software," to 
appear in Journal of Systems and Software. 

Daniel Cooke, "An Informal Introduction to a High Level Language with 
Application to Interval Mathematics," to appear in Interval 
Computations. 

Luqi and Daniel E. Cooke, "Rapid Prototyping and a Model for Software 
Maintenance," to appear in International Journal on Software 
Engineering and Knowledge Engineering. 

During the contract period, the following conference papers were accepted and/or 

published and presented: 

Daniel E. Cooke, "Arithmetic Over Multisets Leading to a High Level 
Language," PD-Vol. 49, Computer Applications and Design 
Abstraction, ASME 1993, Houston, Texas (January, 1993) pp. 31-36. 

Daniel E. Cooke, "A High Level Programming Language Based Upon Ordered 
Multisets," Proceedings of IEEE Fifth International Conference on 
Software Engineering and Knowledge Engineering, San Francisco, 
(June, 1993) pp. 117-124. 



Daniel Cooke and Luqi, "Formal Support for Software Maintenance," IEEE 
COMPSAC '93,  Phoenix, AZ, (November, 1993) pp. 402-407. 

Daniel E. Cooke, "A High Level Language For Engineering Applications," 
PD-Vol. 59, Software Systems Engineering, ASME 1994, New 
Orleans, Louisiana (January,  1994) pp. 323-329. 

Daniel E. Cooke, Büchard Duran, Ann Gates, and Vladik Keinovich, "Bag 
Languages, Concurrency, Horn Logic, and Linear Logic," in 
Proceedings of IEEE Sixth International Conference on Software 
Engineering and Knowledge Engineering, Riga, Latvia, (June, 1994) 
pp. 289-297. 

Daniel E. Cooke, "A Formal Model of Problem Solving and its Impact on 
Software Development," 1994 Monterey Workshop on Formal 
Methods Proceedings, Monterey, CA, (September, 1994), pp. 63-67. 

Daniel E. Cooke, "Preliminary Thoughts Concerning the Interphase Activity of 
Requirement Migration,"   to appear in Proceedings of IEEE Seventh 
International Conference on Software Engineering and Knowledge 
Engineering. 

Ann Q. Gates and Daniel E. Cooke, "The Use of Integrity Constraints in 
Software Engineering"    to appear in Proceedings of IEEE Seventh 
International Conference on Software Engineering and Knowledge 
Engineering. 

PERSONNEL. 
The AFOSR research effort at the University of Texas at El Paso (UTEP) is staffed by 

three people. Dr. Daniel Cooke receives three month's salary each year as project director and 

principal researcher. Ms. Ann Gates and Mr. Richard Duran both received their twelve month 

salaries from the project. 

Mr. Duran is completing a Master of Science in Computer Science in 1995 and Dr. 

Gates completed her Ph.D. in Computer Science at New Mexico State University in December, 

1994. The research component of their respective degrees is based on the research they 

conducted for the project. 

In August, 1993 Bassam Chokr (Previously funded by the AFOSR contract) received a 

Master of Science Degree in Computer Science. His thesis is entitled, A Data Structure for 

BagL. 

INTERACTIONS. 
During the contract period we have had close interactions with a number of people. All 

of these interactions have had a technical focus on the AFOSR funded research: 



Alfs Berztiss, University of Pittsburgh 

Jacob Schwartz, Courant Institute, NYU 

Valdis Berzins, Naval Postgraduate School 

Luqi, Naval Postgraduate School 

C.V. Ramamoorthy, U.C. Berkeley 

Murat Tanik, Southern Methodist University 

S.K. Chang, University of Pittsburgh 

Evidence of further professional interactions Cooke had during the contract period, 

follows. 

Editorships: 
Associate Editor of the Journal for Software Engineering and Knowledge Engineering. 
Book Review Editor of the Journal for Software Engineering and Knowledge 

Engineering. 
Co-editor COMPUTER APPLICATIONS AND DESIGN ABSTRACTION 1992 - 

ASME. 
Editor COMPUTER APPLICATIONS AND DESIGN ABSTRACTION 1993 - 

ASME. 
Proceedings Editor COMPSAC1993. 
Editor SOFTWARE SYSTEMS IN ENGINEERING 1994 - ASME. 
Editor SOFTWARE SYSTEMS IN ENGINEERING 1995- ASME. 
Proceedings Editor IEEE ISADS 1995. 

Program Committees (member): 
Sixth International Conference on Software Engineering and Knowledge Engineering 

(S.K. Chang, Conference Chair). 
Seventh  International  Conference  on  Software  Engineering  and Knowledge 

Engineering (S.K. Chang, Conference Chair). 
Third IEEE Systems Integration Conference      (Raymond Yeh and Peter Ng, 

Conference Co-Chair). 
IEEE CAIA '93 (Peter Selfridge Conference Chair). 
IEEE COMPSAC '93 (Joe Urban Chair). 
IEEE COMPSAC '94 (C.V. Ramamoorthy Chair). 
IEEE ISADS '95 (Joe Urban Chair). 

Program Committees (officer): 
Symposium Chair ASME Computer Applications and Design Abstraction '93. 
Symposium Chair ASME Computer Applications and Design Abstraction '94. 
Chair ASME Computer Applications and Design Abstraction '95. 
Chair ASME Computer Applications and Design Abstraction '96. 
Chair of Workshop on Software Automation for Systems Integration Conference, 

1992. 
Chair of Workshop on Software Automation for International Conference on Software 

Engineering and Knowledge Engineering, 1993. 
Chair of Workshop on Software Automation for International Conference on Software 

Engineering and Knowledge Engineering, 1994. 



., 

Demonstration Chair, SEKE '95. 

Consulting and Technology Transfer: 
During the contract period a number of promising application areas of BagL have been 

identified, including the Database area, C3I simulations, processing satellite telemetry data, etc. 

Below, these areas are discussed. Industrial interest in BagL has come from two companies, 

Knowledge Based Systems, Inc. and Research Analysis and Maintenance, Inc. 

1. Multilevel Secure Databases. 

Mr. Jim Reed of the Data Analysis Center in Alexandria, Virginia (703 960-1000) is 

interested in BagL for the purpose of developing and modeling multilevel secure databases. 

2. C3I Battlefield Management Specification and Prototyping 

It is believe that BagL possesses the features necessary to become an excellent tool for 

specifying and modeling C3I systems. Mr. Sam Dinitto, Division Chief at RADC (315 330- 

3011) supports the claim that BagL holds promise as a language for the specification of 

Battlefield Management Software. In particular, Mr Dinitto claims that BagL is applicable to 

the specification of C3I Systems in the Systems Definition Technology Division of Rome 

Labs. 

3. Rapid Prototyping and Automatic Programming of Naval Applications. 

Mr. William McCoy (703 663-8367) of the Naval Surface Warfare Center is interested 

in BagL for the prototyping and specification of Naval Warfare systems such as the AEGIS 

System. Ultimately a BagL compiler is to be developed which will compile BagL 

specifications to "C" or Ada programs. The NSWC is also interested in a prototyping tool that 

is capable of automatically producing programs. Since BagL is a complete, executable 

language, it is possible to build such an automatic program generator. 

Professor Alfs Berztiss (412 624-8401) of the University of Pittsburgh believes that 

BagL is an excellent language for specification. 

4. Rapid Development of Programs to Process Satellite Telemetry Data. 

Officials of NASA Ames research center have recently begun the development of a new 

satellite called MEDSAT. This satellite is to be used to track the spread of disease carried by 

insect populations. BagL is proposed to be the language used for processing the resulting 

telemetry data. The BagL research project receives some modest funding from NASA Ames. 



5. Education of Computer Science Students. 

Valdis Berzins, currently a professor at the Naval Postgraduate School (408 656- 

2461), has had a long career in language development. This career spans across the 

institutions MIT, University of Minnesota, and the Naval Postgraduate School. Professor 

Berzins recently learned BagL and claims that all Computer Science students should learn this 

language. He supports his comments by stating that BagL abstracts out everything 

unnecessary in problem solution; that its computational model is as simple as it can possibly be; 

there is nothing there that does not have to be there. Furthermore, it can serve as a tool to 

introduce database and concurrency concepts. 

INTELLECTUAL PROPERTY ISSUES. 
No applications for patents or copyrights have been made. 

ADDITIONAL STATEMENTS. 
Additional goals which exceed the objectives of the research effort include the 

development of a second prototype interpreter for BagL in 1994, the initial steps to develop a 

proof system for BagL programs, and the identification of constructs for processing nonscalar 

structures. Appendices E and F summarize the two latter results. 
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APPENDIX A - BAGL EXPRESSIVENESS 

Foundation 
The foundation of this work rests upon the concepts of the Turing machine and 

Church's Thesis. Alan Turing's conceptual automata is able to perform any computation 
known to man. Attempts to improve it through modification have not increased its 
performance and it remains the best definition of an algorithm that we have today. Alonzo 
Church's thesis that no computational procedure will be considered an algorithm unless it 
can be presented as a Turing machine has never been refuted. Every other computational 
procedure developed has been shown equivalent to a Turing machine. The combination of 
these two concepts provides us with a basis for universality, the ability to represent any 
algorithm. The ability to simulate any arbitrary Turing machine in the BagL programming 
language demonstrates that any algorithm can also be represented in BagL, thus 
establishing the universality of BagL 

The BagL Turing Machine 
We began by describing and defining the concept of a Turing machine as a 

mathematical definition of an algorithm. It followed that any algorithm can be represented 
by a Turing machine. After defining Turing machine configurations and computations, we 
illustrated three computational examples. We then provided all the pieces necessary to 
simulate any arbitrary Turing machine from functions and data structures in the BagL 
programming language. The ordered bag data structure simulated the Turing machine tape 
and head. BagL built-in functions provided the "move right," "move left" and "replace" 
functions for the Turing machine's finite control. Refining these three functions to prevent 
"hanging" and alleviate minor problems with bag markers gave us three functions that serve 
as the BagL Turing machine's finite control under any conditions. 

We next created complex BagL functions to simulate the individual computational 
steps on a given Turing machine. We thus described how to simulate all components of 
any Turing machine in BagL, thereby enabling us to simulate any arbitrary Turing machine 
in BagL. We concluded by illustrating the same three examples computed earlier on a 
Turing machine, this time using the BagL Turing machine. The results were identical, both 
in number of computational steps and in configurations. The definitions and examples 
indicate that, using eventive constructs, BagL can replicate any arbitrary Turing machine 
without the use of recursion. 
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APPENDIX B    EVENTIVE CONSTRUCT 
The body of a BagL function is based upon Djikstra's guarded commands [D75]. 

A BagL program consists of a set of BagL functions which are applied to a BagL 

Universe, U. The Universe is where the user may pair BagL variable names with 

bags of values via a text editor. 

Like Linda [G85] when a BagL program executes it modifies the Universe to 

which it is applied. If each variable appearing in a function's Domain is paired with a bag 

in U (and if relations are present in the Domain, each relation evaluates to true with respect 

to U ), the function is enabled for execution and is termed an outer function. Obviously, 

several functions may be thus enabled. These functions may execute concurrently. When 

an outer function executes, it consumes all variables in its domain. 

When an outer function completes execution, the result(s) of the function is(are) 

paired with the function's range variable(s) and added (or produced) in the Universe. It 

is via the Universe that a user provides inputs and obtains outputs. There are no explicit 

constructs for I/O in BagL . BagL inner functions are invoked by some function that is 

already executing. A BagL inner function/ receives its input bags from the invoking 

function g and returns its result (always a bag ) to g. 

The interaction between a BagL function and its Universe in terms of production 

and consumption provides for the eventive processing of a nonscalar structure. 

In eventive processing, one processes a nonscalar structure whose elements are not 

available all at once. The arrival of an element is an event to which a function must 

respond.1 

Example of the Execution of a BagL   Program. 

Consider the following set of functions to compute the average deviation of a set of 

numbers. Assume an initial Universe: 

U = {<x,[[33],[88],[66],[44]]>} 

and a BagL program: 

[J={ ave( Domain(x),Range(x,ave)) = [x, /([+([x]),size([x])]) ] 

dev(Domain(x, ave), Range(x, ave, dev)) = 

1 We are currently investigating the use of a fairness operator [D89] to address the 
nondeterminancy in the event-driven semantic of SequenceL, wherein two consuming outer 
functions have a non-null intersection of domain/range variables. 
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[x, ave, /([+([abs([-([x,ave])])]),size([x])]) ]} 

The only function eligible for execution is ave. When it begins execution it 

consumes its domain so that U={}. A trace of the execution of ave follows. In each line, 

the term to be evaluated next is underlined. The nature of the evaluation appears as an 

annotation in the intervening lines. 

[x, /([+([x]),size([x])]) ] 

Instantiate x   based upon U 

[[[33],[88],[66],[44]], /([+([[331.[881.[661.[4411).size(f[331.[881.[661.[4411)]) / » 

Evaluate the addition   operation 

[[[33],[88],[66],[44]], /([[2311.size([!331.[881.[661.[4411)l) 1 

Evaluate the size   operation 

[[[33],[88],[66],[44]], /(f[2311.[411) 1 

Evaluate the division    operation 

[[[33],[88],[66],[44]], [57.75]] 

The completion of this outer function results in the Universe: 

U = {<x,[[33],[88],[66],[44]]>, <ave,[57.75]>] 

Now, function dev is eligible for execution. An annotated trace of its execution follows: 

/ x, ave, /([+([abs([-([xJave])])]),size([x])]) ] 

Instantiate x   based upon U 

[[[33],[88],[66],[44]], [57.75], /([+([abs([-([[[331.f881.[66U4411J57.7511)l)n. 

size([[331.[881.f661.[4411)l) 1 

Evaluate the subtraction, abs,    and size    operations 

/ [[33],[88],[66],[44]], [57.75], /([+([[24.751.[30.251.[8.251. fl3.751DJ411) ]     » 

Evaluate the addition   operation 

/ [[33],[88],[66],[44]], [57.75], /([[771J41D ] 

Evaluate the division    operation 

[[[33],[88],[66],[44]], [57.75], [19.25]] 

The completion of this outer function results in the Universe: 
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U = [<x,[[33],[88],[66],[44]]>, <ave,[57.75]>, <dev,<19.25]>} 

Notice that the result of ave   is required for the execution of dev.   Furthermore, notice that 

dev could invoke ave to obtain the value needed, making ave an inner function: 

n= { ave( Domain(x),Range()) = [ /([+([x]),size([x])]) ] 

dev(Domain(x), Range(x,ave, dev)) = 

[x, /([+([abs([-([x,ave([x])])])]),size([x])J) ]} 

which is evaluated according to the following annotated trace: 

I x, /([+([abs([-([x,ave([x])])])]),size([x])]) ]} 

Instantiate x   based upon U 

[ [[33],[88],[66],[44]J, /([+([abs([-([[[33],[88],[66],[44]], 

ave([[33U88ir66U44mi)l)l).size([[33U88U66U4411)l) ] 

Evaluate the ave   user-defined function 

[ [[33],[88],[66],[44]], /([+([abs([-(f[[33lf88U661J44Jl 

l57.75]])])]),size(U33U88U66U44]})))] 

Evaluate the subtraction, abs,    and size    operations 

[ [[33],[88],[66],[44]], /(r+fff24.75U30.25U8.25W3.7511U4W J 

Evaluate the addition   operation 

[ [[33],[88],[66],[44]],  /(f[77lf4]]) ] 

Evaluate the division    operation 

[ [[33],[88],[66],[44]],   [19.25]] 

In all previous examples, the eventive construct is employed on all elements of the 

domain structure. It is also possible to selectively execute an outer function on some of the 

elements, rather than on all. In these cases, one employs a condition on the domain 

variables: 

cool( Domain(>(temp, thermostat), =( [ac_on, [false] ] )),Range(ac_on,temp,thermostat)) = 

[ [true ], temp, thermostat] 

steady( Domain(<-(temp,thermostat),=([ac_on,[true]])),Range(ac_on,temp,thermostat)) 

[[false ],temp,thermostat] 
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In this example, not only must values exist for domain variables temp   and thermostat, 

the domain conditions on these variables must be satisfied. Notice that current temp and 

thermostat values are reset since they appear as Range variables. 

Based upon the BagL data dependency execution strategy, it is clear that 

many functions may be eligible for execution at any given time. Important characteristics 

of the concurrent behavior of BagL outer functions can be ascertained by the 

Domain/Range sets of variables given in the function definitions. BagL supports different 

modes of operation. The actual mode is dependent upon whether domain and/or range 

variables are shared among outer functions. Assume that f(DOM) and f(RAN) are the 

complete sets of variables referenced in f's domain and range definitions, respectively. 

Assuming that both // and fj are outer functions, the following definitions follow 

logically: 

Def 1.   Competing Functions.  Functions /i and fj are competing iff 

fi(DOM) n fj(DOM) * 0 . 

Def 2.   Interfering Functions.  Functions /i and fj are interfering iff 

fi(RAN) n fj(RAN) * 0 . 

Def 3.   Cooperating Functions.  Functions /i and fj are cooperating iff 

fi atidfj are not Competing or Interfering and 

fi(DOM) n fj(RAN) * 0 v fj(DOM) n fi(RAN) * 0 . 

Def 4.  Autonomous Functions.  Functions /i and fj are autonomous iff 

they are not competing, cooperating, or interfering. 

Outer functions that satisfy either definition, 1 or 2 (i.e., Competing or interfering 

functions), result in concurrent, nondeterministic behavior. Functions that satisfy only the 

Cooperating functions definition are sequential, and those satisfying definition 4 result in 

concurrent, deterministic behavior. 
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APPENDIX C INTEGRITY CONSTRAINTS IN BAGL 
BagL IS extended to impose database integrity constraints through the use of the 

eventive construct of BagL which is defined in Appendix B. The extension does not add 

to the knowledge required of the BagL programmer. Functions which impose integrity 

constraints behave in a manner consistent with the behavior of BagL functions which 

compute results. Consider a simple example. Assume a database exists, like that presented 

in figure C.l, view 1. 

A BagL function to compute a ten percent raise for all employees, as applied to the 

Employee Database, would be: 

Function Raise( Dom(Salary), Ran(Salary)) is [Salary * 1.1] 

One type of BagL function, called an outer function, is initiated for execution based 

upon the availability of data in the database. In particular, the domain variables of the 

function (e.g., Dom(Salary)) must be paired with values in the database to which the 

function is applied. (The data dependent execution strategy provides the BagL eventive 

construct.) When the function begins execution, the domain variables are consumed from 

the database. Assuming Raise is an outer function, the initiation of its execution results in 

the change to the database as it is depicted in view 2 of figure C. 1. 

View 1 

Employee 
Database 

Name 

bob 
mary 
sue 

Salary 

50,000 
55,000 

90,000 

View 2 
Name 

bob 
mary 
sue 

View 3 
Name Salary 

bob 
mary 
sue 

55,000 
60,500 

99,000 

Figure C. 1. Modifying the Employee Database. 

When an outer function completes execution, its results are paired with the range 

variable(s) and placed in the database. For example, when function Raise completes 

execution, its result is produced in the database and paired with the name Salary. See 

figure C.l, view 3. 

In order to impose constraints on a database, it is typically incumbent upon the 

programmer to distribute appropriate guards into all functions which update a constrained 

field. For example, suppose there is a cap placed on salaries in the Employee Database 

above, limiting salaries to be no greater than $100,000. To impose this constraint, the 

programmer in a typical language must place an appropriate guard on any statement 
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updating the salary attribute. Furthermore, the programmer must be concerned about 

indirect updates to the constrained attribute. For example, when a new employee's 

information is added as a tuple to the Employee Database, the programmer must recall that 

there is a constraint on Salary and furthermore, the programmer must recall that Salary is 

an attribute of the Employee Database. 

The problem with relying on the programmer to impose constraints is that the 

programmer has to keep track of the constraints and know when it is appropriate to impose 

them. When a constraint changes, a system maintainer must remember all of the functions 

which are affected by the change and make the appropriate modifications. 

One can envision BagL functions which initiate execution upon availability of 

databases rather than upon domain variables. We are making simple alterations to the 

syntax and semantics of BagL so that constraint functions will behave and be written in a 

manner consistent to BagL computational functions: 

Constraint(Dom(DB,DB'),Ran(DB))is 

[ [DB'J  when <=(Salary', 100,000) 

[DB]    otherwise        ] 

This function executes whenever the named Database and its successor (denoted by 

a prime) is available. Whenever the named database is updated (i.e., when both DB and 

DB' become available), the function, Constraint, returns the new database if the Salary 

constraint is met. Otherwise, the old database is returned. There is no need for the 

programmer to place guards throughout a program or set of programs which affect, either 

directly or indirectly, the constrained attribute. The constraint is stated one time and is 

imposed on any update, whether direct or indirect. If, at a later time, the constraint 

changes, only one software update is necessary. By removing the responsibility for 

imposing constraints from the programmer, BagL provides a foundation for the production 

of more reliable software. 
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APPENDIX D    VISUAL LANGUAGE 
The representation of a problem solution in any language, regardless of the 

abstraction level of the language, is complicated by two needs: 

(1). the need to present nested operations and 

(2). the need to select operands upon which the operations are to apply. 

Nested program structures are a major source of confusion when attempting to read 

or write a program. In procedural programs this source of complexity is made worse by 

the fact that there are many different types of control structures that can be nested, including 

procedures, functions, iterative statements, and if-then-else structures. Programmers must 

understand the interaction between nested statements of differing constructs (e.g., loops 

inside if-then-else, etc.) and then they must understand the interaction of the non-control 

statements inside the nested structures. 

BagL presents an improvement over the procedural languages in that only non- 

control statements are nested in BagL (Control statements, other than guarded commands, 

do not exist in BagL). Therefore, the programmer need only understand the interaction of 

nested terms and relations in BagL — nothing else can be nested. However, BagL still 

suffers from some of the confusion which results from nested structures. Consider the 

irregular BagL function to compute the square of a matrix: 

function square( dom(t), ran(sq) ) is [+( [*([t(i, (*)),t( (*),j)])] )] 

This function is indeed daunting. It states that for each i and j associated with table t 

multiply row i by the corresponding elements of column j. This operation results in a bag 

of products to which the + sign is distributed, resulting in the singleton bag corresponding 

to the i jth position of the range bag, sq. 

With the square function, one observes the difficulty of representing nested 

structures; we call this problem the containment problem. What is inside what? The 

typical approach to dealing with this problem is to use a directed graph to represent the flow 

of the equation. [B93]   See figure D. 1. 

t(i,*)  
* + 

t(*,j) 

Figure D.I. Nested Structures. 
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While an improvement over the textual definition, there may be better ways to 

indicate the nesting of BagL terms. Using our method, the containment of an operation is 

self-evident. Consider again the BagL function to square a matrix, but this time the 

presentation will benefit from an improved visual approach: 

Figure D.2. Containment. 

As one can observe, the containment of an operator is self-evident when compared 

to the textual function, above. BagL's abstraction actually facilitates the development of a 

visual interface. The research into visual languages and interfaces is typically based upon 

current paradigms of programming. The languages serving as a foundation for this work 

have complicated computational models which tend to muddy the waters in the search for 

interface improvement. As stated previously, BagL has the simplest possible 

computational model. There are no unnecessary complications in the model. 

Similarly, the BagL model suggests basic operations associated with the selection 

of operands for computation. There seem to be basic selection operations which may also 

have revealing visual definitions. The two fundamental ways to select data are (1). based 

upon value and (2). based upon position. The darkened row and column of tables t in 

figure D.2 suggest a scheme to depict the selection of operands based upon position. With 

a better representation scheme, BagL should provide a view of problem solution that is 

easy to read, write, and comprehend. With better comprehension should come increased 

effectiveness. 



El 

APPENDIX E   A PROOF SYSTEM FOR BAGL PROGRAMS 
In this appendix we introduce the axiomatic definitions of BagL outer functions. 

We will consider only outer functions with no cooperation, i.e., ~(3fl,f2)(fl * f2 & 

Domain(fl) n Range(f2) # {}), where /i is a BagL function. We give all definitions 

necessary to relate the example BagL function with a corresponding formal requirement. 

The idea in the requirements phase is that one is stating his/her intentions with 

respect to the affect a BagL function is to have on its universe. In the following, the 

formula R&V&D is derived from a formal requirement and states the desired result of a 

function. In the formula R&V&D, R is the condition desired, D is a formula defining the 

two sets DOMAIN and RANGE, and V is a formula which states membership information 

for the Universe, U. 

Axl:    wp("£", R) = RX
E & {x}=RANGE 

where "R
X

E denotes a copy of the predicate defining R in which each occurrence of 
the variable x is replaced by [the meaning of a BagL_Term], (E)" [D75]. 

Ax2: wp( "£,• when Bt" ,R) = BB 

where BB = (3i: 1 < i < n : Bj) & 

(Vi: 1 < i < n : Bj => wp(Ei,R)) 

See [D75] for the theorems related to BB. In Ax3, assume Dom and Ran   are the 

sets of domain and range variables given in the BagL function /'s definition: 

Ax3: wp( "f(Dom,Ran)= [E[ when 5/ ]" ,R&V&D) = 

(wp(E; when 5/, R )) & 

(Vx)(x e DOMAIN => wp(x,V)) & 

(Dom=DOMATN & Ran=RANGE) 

Our goal with Ax2 is to make BB=TRUE. In doing so, the hope is that the first and 

third outer conjuncts of Ax3 will be true, leaving the second conjunct as the sole precondition 

to the function's execution. The second conjunct of Ax3 effectively gives the semantic of the 

function: that the elements of the DOMAIN are consumed in the universe, leading to the 

production of the RANGE element. 
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An Example. 

Our goal in the proof is to show that a function of BagL satisfies the postcondition 

R&V&D which is obtained from a SPEC [BL91] requirement: 

CONCEPT max(x,y:integer) VALUE (rminteger) 
WHERE (m=x OR m=y) & m>x & m>y 

Becomes, 

R&V&D, where 
R=(m=x OR m=y) & m>x & m>y     -from the WHERE clause 
V= UD{ <m,_>} -from the VALUE clause 1 
D= DOMAIN={x,y} &RANGE={m} 
— from the arguments of CONCEPT max and the VALUE clause 

We begin the derivation with Axl because in order to obtain a function we must first 

obtain its set of guarded commands, and in order to obtain a set of guarded commands, we 

must first obtain the individual commands — the only commands possible in BagL are the 

BagL_Terms "E". Given R, we first let "E" be "x": 

By Axl and through simplification: 
wp("x",R)       = ((m=x OR m=y) & m>x & m>y)mx & {m}={m} 

= ((x=x OR x=y) & x>x & x>y) & TRUE 
= x>y 

By Ax2 (the second conjunct of BB) we can take the wp("x",R) as a guard: 
(x when x>y) 

However, the first conjunct of BB, namely (3i : 1 < i < n : B[), is not satisfied, i.e., 

BB^TRUE.  To make BB=TRUE we repeat the sequence above for the other alternative 
which will guarantee there will always be some Bj=TRUE: 

By Axl and through simplification: 
wp("y",R)       = ((m=x OR m=y) & m>x & m>y)my & {m}={m} 

= ((y=x OR y=y) & y>x & y>y) & TRUE 
= y>x 

By Ax2 (the second conjunct of BB) we take the wp("y",R) as a guard: 
(y when y>x) 

1 Assume that underscore (i.e.,"_") can match anything as an anonymous variable. 
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Leading to the guarded set 

(x when x>y else 
y when y>x) 

which satisfies Ax2 (i.e., BB=TRUE), leading to the application of Ax3: 

wp("fl[x,y],[m])=(y when y>x else x when x>y)" ,R&V&D) 
= TRUE & (Vx)(x e DOMAIN => wp(x,V)) & 

(Dom=DOMATN & Ran=RANGE)     [By Ax2] 

= TRUE & (wp(x,V) & wp(y,V)) & 

({x,y}={x,y} & {m}={m}) [By Substitution] 

= (wp(x,U 2 {<m,_>}) & wp(y,U 2 {<m,_>})) & TRUE 

[By Simplification] 

= U 2 {<x,_>} & U 2 {<y,_>} 
[By Axl and 

simplification] 

Now, the function, its precondition, and its postcondition (which was given) are known. One 

can see, as a result of the foregoing, that the BagL function satisfies R&V&D which was 

obtained from the SPEC requirement: 

(U2{<x,_>) &U2{<y,_>}) 

f([x,y],[m])=(y when y>x else x when x>y) 

((m=x OR m=y) & m>x & m>y) & 
UD {<m,_>} & 

(DOMATN={x,y} & RANGE={m}) 
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APPENDIX F   NONSCALAR CONSTRUCTS 
From one perspective, the history of language design indicates that languages have 

evolved from algorithmic-oriented languages to data structure-oriented languages. (See 

Figure F.l.) Consider the move from FORTRAN to languages like ALGOL and Pascal. 

In solving problems in FORTRAN, one focuses on the production of an algorithm. In a 

language like Pascal, a problem solution is an algorithm that interacts appropriately with a 

data structure. A good example of the Pascal view is a program to convert a prefix 

arithmetic expression into an equivalent postfix expression. After constructing a binary tree 

which holds the prefix expression in an appropriate configuration (that is, a configuration 

where operators are parents of operands), one merely performs a postorder traversal of the 

tree to obtain the postfix expression. The data structure designed thus, plays a central role 

in the problem solution. 

Object-oriented languages, which encapsulate data structures, take the notion of 

problem solving further away from algorithms and closer to data structure design. The 

intent is to view the product of software engineering to be a set of objects, rather than 

programs. 

BagL has been developed in order to explore the possibility of a language based 

solely on high level constructs for describing data structures. In BagL , a problem solution 

is a data structure which holds results useful in solving some problem. This view of a data 

structure (henceforward called a nonscalar ) is meant to include traditional data structures, 

databases, screen displays, reports, etc. The nonscalars of BagL are bags. 

Algorithm- Algorithm/ Object Declarative 
Orientation DS- 

Orientation 
Orientation Data   Structures 

JO&CKAAl PASCA£ ADA 
SJHA££<CA£K 

gAMMA 
AP£ 
QAgc 

Figure F. 1. Evolution of Languages. 

Bags in BagL are collections of elements wherein each element may occur more 

than one time (as opposed to a mathematical set) and where each occurrence of an element 

possesses an ordinal position.   A bag   may be singleton (e.g., [99]), or nonsingleton 
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(e.g., [[1],[2],[3]] or [[[1],[2],[3]],[[10],[20],[30]] ). Complex structures of bags 

containing bags can be described. Like the list of LISP [L60], the bag of BagL can be 

used to build any data structure. 

When processing nonscalars, the central problem is the selection of elements to 

which the processing is to be applied. Sometimes it is desirable to apply an operator to all 

elements of a nonscalar. The regular form of processing (which is one of the nonscalar 

processing constructs of BagL ) is one where an operation is to be applied in a uniform 

manner to all of the elements of the nonscalar. For example, when one computes the sum 

of a set of elements, the addition operator is being applied to all elements of the set (i.e., 

the addition operator is acting as an aggregate operator in this case). In other cases, one 

may wish to apply an operator to some of the elements of the nonscalar. The selection of 

elements may be based upon value or position. BagL possesses a construct for this 

irregular form of processing data. 

In both the regular and irregular forms of processing nonscalars, one begins with a 

nonscalar and (typically) reduces in the dimension of the nonscalar (in the case of regular 

processing) or reduces in cardinality (in the case of irregular processing).1 There are 

times, when it is necessary to expand a nonscalar, increasing the nonscalar in dimension 

and/or cardinality. BagL possesses a construct termed the generative construct which is 

used to expand nonscalars. 

1 A reducing construct, given an input D will produce a result, R where R is no larger 
(in dimension or cardinality) than D.   E.G., Given a construct that reduces in cardinality: 
D ->R, the following relation holds after D is mapped to R: \D\ > \R\ 
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DOMAIN 

SELECTION 

RANGE 

Reduction       Expansion 

ALL ELEMENTS 
PRESENT 

ALL 

Dimension Dimension 

Cardinality Cardinality 

SOME 
Dimension Dimension 

Cardinality Cardinality 

SOME ELEMENTS 
PRESENT ALL 

Dimension Dimension 

Cardinality Cardinality 

SOME Dimension Dimension 

Cardinality Cardinality 

Figure F.2. A Summary of Nonscalar Constructs. 

Sometimes, a nonscalar is being processed wherein all elements of the nonscalar are 

not present all at once. In this case, the arrival of an element is an event to which an 

operation must respond. BagL possesses an eventive construct. With (or without) the 

eventive construct there are features to select all or some of the elements in the nonscalar 

structure. See Figure F.2 for a summary of the constructs necessary to describe nonscalar 

processing. 

In nonscalar processing, a nonscalar in some domain (i.e., the DOMAIN column 

in figure F.2) is selected to be the basis for a new nonscalar (i.e., the RANGE column in 

figure F.2). The input (or domain) nonscalar may be totally or only partially present. The 

eventive construct of BagL captures this latter notion. The first and third options in the 

second (i.e., the SELECTION ) column indicate that given a nonscalar X, where X is to 

serve as the basis for a new nonscalar Y, all values of X are used to form Y. The 

regular construct satisfies this notion. 

Alternatively, only selected values of X may serve to form Y (the second and 

fourth options in SELECTION ). The irregular construct provides this facility of 

nonscalar processing. Finally, the result Y (or RANGE ), when compared to its basis X, 

may be reduced in dimension or cardinality. The regular and irregular constructs 

reduce in dimension and cardinality, respectively. Alternatively, Y may be expanded in 

dimension or cardinality.   The generative construct provides for the expansion of 
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nonscalars.   The regular, irregular, generative,   and eventive   constructs of BagL 

may be viewed as nonscalar primitives. 

There are other declarative languages meant to process nonscalars. They typically 

excel in one form of nonscalar processing, but fall short in others. For example, one of the 

earliest languages for nonscalar processing, APL, excelled in the regular processing of 

nonscalars but often fell short in the other forms of nonscalar processing, most notably in 

the irregular processing of nonscalars. 
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